覆盖学起Plus、超星学习通等平台的全学科作业答案、历年真题与考试速查系统
2025秋江苏开放大学算法设计与分析形考作业3(占形考比例30%,占总成绩的15%)
招生简章 2025-09-15 00:46:32 0 0
中国大学MOOC作业考试答案

想要快速找到正确答案?

立即关注 超新尔雅学习通微信公众号,轻松解决学习难题!

超新尔雅学习通
扫码关注

作业辅导
扫码关注
论文指导
轻松解决学习难题!

算法设计与分析 - 形考作业3(占形考比例30%,占总成绩的15%)

课程名称:算法设计与分析 发布教师:刘田田 作业来源:第八单元 动态规划法 作业满分:100.0分 发布时间:2025-07-09 作业要求:学习完分治法、动态规划、贪心、回溯四个单元的内容后,完成本次作业,题型涵盖选择题、填空题、判断题、简答题和编程题。满分100分。

单选题

1. 应用Johnson法则的流水作业调度采用的算法是( )。 (分值:2.0分)

A. 动态规划算法

B. 贪心算法

C. 分支限界法

D. 分治法

2. 动态规划算法的基本要素为( )。 (分值:2.0分)

A. 最优子结构性质与贪心选择性质

B. 最优子结构性质与重叠子问题性质

C. 预排序与递归调用

D. 重叠子问题性质与贪心选择性质

3. 二分搜索算法是利用( )实现的算法。 (分值:2.0分)

A. 贪心法

B. 动态规划法

C. 回溯法

D. 分治策略

4. 下列不是动态规划算法基本步骤的是( )。 (分值:2.0分)

A. 定义最优解

B. 算出最优解

C. 找出最优解的性质

D. 构造最优解

5. FIFO是( )的一搜索方式。 (分值:2.0分)

A. 回溯法

B. 贪心法

C. 动态规划法

D. 分治界限法

6. 秦始皇吞并六国使用的远交近攻,逐个击破的连横策略采用了以下哪种算法思想?( )。 (分值:2.0分)

A. 递归

B. 分治

C. 模拟

D. 迭代

7. k带图灵机的空间复杂性S(n) 广东开放大学 是指( )。 (分值:2.0分)

A. k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最小方格数。

B. k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数。

C. k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数。

D. k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和。

8. 最大效益优先是( )的一搜索方式。 (分值:2.0分)

A. 动态规划法

B. 贪心法

C. 分支界限法

D. 回溯法

9. 最长公共子序列算法利用的算法是( )。 (分值:2.0分)

A. 贪心法

B. 分支界限法

C. 动态规划法

D. 回溯法

10. 下列算法中通常以自底向上的方式求解最优解的是( )。 (分值:2.0分)

A. 回溯法

B. 备忘录法

C. 贪心法

D. 动态规划法

11. 衡量一个算法好坏的标准是( )。 (分值:2.0分)

A. 占用空间少

B. 运行速度快

C. 时间复杂度低

D. 代码短

12. 以下不可以使用分治法求解的是( )。 (分值:2.0分)

A. 棋盘覆盖问题

B. 选择问题

C. 归并排序

D. 0/1背包问题

13. 实现循环赛日程表利用的算法是( )。 (分值:2.0分)

A. 回溯法

B. 贪心法

C. 动态规划法

D. 分治策略

14. 一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( )。 (分值:2.0分)

A. 定义最优解

B. 贪心选择性质

C. 重叠子问题

D. 最优子结构性质

15. 实现最大子段和利用的算法是( )。 (分值:2.0分)

A. 贪心法

B. 动态规划法

C. 回溯法

D. 分治策略

16. 实现棋盘覆盖算法利用的算法是( )。 (分值:2.0分)

A. 分治法

B. 动态规划法

C. 回溯法

D. 贪心法

17. 实现合并排序利用的算法是( )。 (分值:2.0分)

A. 贪心法

B. 分治策略

C. 回溯法

D. 动态规划法

18. 下列是动态规划算法基本要素的是( )。 (分值:2.0分)

A. 构造最优解

B. 子问题重叠性质

C. 算出最优解

D. 定义最优解

19. 对线性表进行二分查找时,要求线性表必须( )。 (分值:2.0分)

A. 以顺序方式存储

B. 以顺序方式存储,且结点按关键字有序排序

C. 以链接方式存储,且结点按关键字有序排序

D. 以链接方式存储

20. 分治法的设计思想是将一个难以直接解决的大问题分割成规模较小的子问题,分别解决子问题,最后将子问题的解组合起来形成原问题的解。这要求原问题和子问题( )。 (分值:2.0分)

A. 问题规模相同,问题性质不同

B. 问题规模不同,问题性质相同

C. 问题规模相同,问题性质相同

D. 问题规模不同,问题性质不同

21. 所有的递归函数都能找到对应的非递归定义。 (分值:2.0分)

A. 正确

B. 错误

22. 定义递归函数时可以没有初始值。 (分值:2.0分)

A. 正确

B. 错误

23. 动态规划算法基本要素的是最优子结构。 (分值:2.0分)

A. 正确

B. 错误

24. 回溯法中限界函数的目的是剪去得不到最优解的子树。 (分值:2.0分)

A. 错误

B. 正确

25. 动态规划算法求解问题时,分解出来的子问题相互独立。 (分值:2.0分)

A. 错误

B. 正确

填空题

1. 选择排序、插入排序和归并排序算法中, _____ 算法是分治算法。 (分值:2.0分)

2. 若对一个问题的求解可转化为对其性质相同的子问题的求解,则称该问题满足 _____ 。 (分值:2.0分)

3. 动态规划算法中存储子问题的解是为了 _____ (分值:2.0分)

4. 随机算法的一个基本特征是对于同一组输入,不同的运行可能得到 _____ 的结果 (分值:2.0分)

5. 在快速排序、插入排序和合并排序算法中, _____ 算法不是分治算法。 (分值:2.0分)

6. 下列是基于分治策略的二分查找算法的部分代码,请补全空格中的缺失代码。 int BinarySearch( int ArrayData[], int left, int right, int *x ) { if ( left > right ) return -1; int middle = _____ ; if ( *x == ArrayData[ middle ] ) return middle; if ( *x > ArrayData[ middle ] ) return BinarySearch( _____ ); else return BinarySearch( _____ ); } (分值:6.0分)

简答题/计算题

1. 给出算法的定义。何谓算法的复杂性。计算下例在最坏情况下的时间复杂性。 for(j=1;j<=n;j++) (1) for(i=1;i<=n;i++) (2) {c[i][j]=0; (3) for(k=1;k<=n;k++) (4) c[i][j]= c[i][j]+a[i][k]*b[k][j]; } (5) (分值:6.0分)

2. 【算法设计题】炮弹一样的球状物体,能够堆积成一个金字塔,在顶端有一个炮弹,它坐落在一个4个炮弹组成的层面上,而这4个炮弹又坐落在一个9个炮弹组成的层面上,以此类推。写一个递归函数CannonBall,这个函数把金字塔的高度作为参数,并且返回它所包括的炮弹数量。函数必须按照递归方式实现,不可以使用迭代结构,例如while或for。 请给出具体实现代码。 (分值:12.0分)

3. 【算法设计题】回溯法设计0/1背包问题的算法。 实例如: 给出具体实现代码。 (分值:16.0分)

渝粤文库 W42l1V6ebRYzvhPuf0cLD/NHNhMz1j+iIXvlo/PaKN52e/1SzvSTxAcDg4HviIHbRV11luLCJJi9SSPncmwyqfJ8NqFy6DrX9VncnN0edvx1zkTvV5HeYJDAK233bJLIwrejIwkRo1zDZ5MryVFZq0QJv4UFY21Ombtjixp0vRJH8dDpxWfk78aSeLgf8HQxrYUdPJ3ubk6MruLr17PgFn56aLVDf1hjjjXmOl117gpt8qbOnO/G0nbvmr6w5rtGjFfxg+6uzdU27NqNU+VdPesrNt5pK7kzPwl+MDAY+A4YeKyoWznrIbtaP5s36Rwd/iYjD/FXihrtQWbKsagwsUOnbTnHvImvFmvKtkcHNlPAwaMc9DJPcmXeNda7RgGFLG202FDPlR6dxnF1O3hFXkdrwXq0p/JRWFrUrgo6abOwg2cnDhbr2IQc9869EFtZ6FRM8+xeV35tW/XEeicOlb/aUNfzWVpsy3nG+IkNYoyxvldanvVvx2biD/2qsUe01brznR2rOfbRvVzRdPPw7PjU8c7cJPvBwGDgq2Bgu6jz8Dfh0+MEBQWH4apZJKzWmV8dwiZUdEG3Chr80tB38kgwR8lqJZt5kgtyM7Ezb0y4yUl+b7uITc7XscUbvbKkYQ7/fd7tX7ld0x5i7e3VK/I6m3NPd+IjfuhrkdYlfWjkYc+I61EcsQE6bXGvxYr74jM+EZvEI/p8rvxdDHIO3a+0lLUaYxs6sK3S6J97jy9H8dK/7h2rstX7in/wVrn5zL6h5yOamEh9ORZrHTaTbsaT8AcDg4HPwsB2UZeHp0kTI3P+7sG6ShAmHA52ZHdBMRmRaC0Y+PSftB6+yDk7qJPPMTz4XIs37UuZ3vycJUdkW/wxVpY6nWO+tq7QMtlCmzKujLUHP7Xnyds64mSxuNpz7GUfvXVkz9jPrtBgjVZ9hBa8uI5OfOpkSOdajSNxgF8d7q/2w4cenyu/fKseXuTXPT57No4ruTmvj9iW84zdZ9bwjfeJ9yUxnTxX/EMvLflzvLPe7W/KwJ6zWN1d7+KVuhOjR34mz4wnuQ8GBgMfiYHtoi6N4AA7O2yT/s7Y5Kmu7tDMYs0D2IPWwofkhK20qwUKidpkr7z0RdtSLvTorAVg8jmm8MNenk2urtFjM8kbPTSKG+b01XlomWMNOSljd2y8kYEPNIv3zvdducQCO5XFWPs7GdBLiy0WSx0t67RujTn2IGV1e0IRg03KOIsjMtAJHzzSK9vn3X2AHhyrf7eHB94devzD5o5e3LmW+97ZBR2ydvxDb8a22rqzfrS/VR7P2PVK62Su5owdNh7hdMU/85PcBwODgacx8FhRlwcch9xOOzrwvTUyiVTaTD65ZhGHPcogsTN/JXjKqbd+KcPbEvqc3xmTME0G+KitjGn4xzp+KM9Y0DOXSdG1pJdvp3f/skDt5nZkJY1+JR6Il0VR0jI2LtDoZ6XxWZk+dz0FKYXz0T4mn3EkSVOoVT7sAk/yGCMLIHFzdx+U+2QPTogVe4Fd2VzLWLM30ONnLeiv+Kds9+lufyUW6GCPfDeyxx9azjmGB09MrhcAACAASURBVN4ruqAFIxb0V3mHfhL6YGAw8DQGHi/qOCQzaXRjEz20K4dIHn765bBNWgoeb626NeZs0JlwV7q6eQ/51YHtzRZJAl2ZFDt5dc7iQTtr7zrxk9c5dZmQWHct6eU767NAVjY8OV+T+5nMug4/e4rN+spzpeMZG9DdreWccnJuNd6RBw3xU669vF1BA77AgHrlzzi6Zm8c3L+uz9hcpVePfcZcn2pf7eXdg6YWtfq3gzP0wo/srrF2to4N+rHTQ7+yzTh3cvSrW5u5SbyDgcHAd8HA40Xd6kDNgHDAc/hyyOZ8HZtMk5YCjUTAnH2VY9HIDY0yquyjZ5M3hd2KjmIPG0x+6FzRdvPYlYlOm51jHfldgwaZmaSM6U78qz3qrnGEzmTXrVU5u89+RZ7F0C5v0hmbnLsz5mbKGCiTvWePLWbZD+awWUxZ2PsVOrqNl3vU2SONuro+9/EqfdXJ3qGjs0nZdU1/4fPDVfqX9lV9Pic+nct+Zx39yXM2hp59Unb27B0t5xzDc1XXmS2zPoXAYGAw8NkYeLyoWx2oHp70q2Js5TyHLXwUdBzKPJOELWRYS17nsSXnd8ce8HlbUnmlIbGjH5ssACrtzrPJNWnTT3yykDQBo1ff9Xkn2aYO+Vb2Z3Jf3VqmvJ1x6rxzi6oObKb5fKe3KEeOCZ9xjaOFaMbAPUucOOcedTZJU3VAa2xyTfpOpmtJX3WKzyP+bk1biIfY3tGnfvQaU7GaPWtn61f3F3p0YGdtvLO0Os8zPFd16ef0k7gHA4OBr4KBb1XUefBS0BFAkw7zNaAmYQ7sunb07C1dJ1M+iyvt2OGRd9VjZ00qPKf9+msCxkbtdC3pV7qcz4Itb2Nctz/6GStprvTain/6coVfWvhrzFzb7dk7Ymhhpm0ZR2/xjDWyiZ1FSeqS9sgv9zp1KKPTL30n07VOljKxexVr+TvZ8LOehbf0R/pS71nRdrZ+dX+hX9lGHHIPtVM/r+pK/hlPUh8MDAa+AgYeL+pWB2o6a+JaHbBJy5jDFlr4svg4ksPNAgkD3tUP5Vc9Jmp4Vkku5Xp7gRxvH/Mmp8rvntGJLosBeny1cGRMTGnSaBtrNOQai534awe8+Irt2OF811sk79B2/DmnLHSf6U2+OoafVudfea5xNObVb32o+21MExvVHvYIu7u9qvrhld59T3mudbKk06Yj/m5N/uzVV/1OGscUyhbLzmWPXbScyzG8R34lrWMxcbdXzm5PHHZisStv6KYwGAwMBl7BwMtFHUmZQ83Dnq83PKxXvQXQ0YGeTnFAd7QmwLpmgiIpwEtxl7cNKTvH+lDlSYOv2p7FJevIN5Hs6Mqv/eSzR7+2O5e9/kGnrcZiNwlarOzGBt8tktVpXLoeGmyhoMY2GjgxfvizI6eT7Zwx8fmJvsaRfaoxcm/wperEJ+yq8/kszrq9qvrhk561lJNrnSxptemIv1uTP/sjW5KOdwCZR4340Y5oWNt5n9SNr9jYyTzSB89VPBoL9rueB9oz/STowcBg4DMx8FJRx8FpEecB5zMH5KpxuF5J6ita9Ocahz86scEgWrxARzJ2vvbwQkNDbl3Pgg77ea40xqAWAZWOZ2zBVngYa2fSYgvrzumv9pFITCauJb18tVcX8ndvMZGhDvhWMYCOWypojtoRf7V39az81fqdeX3MOOatmzhZ7THYw64j3ciGJnVI3+mXnjXp7F3rZEkDztB3xN+tyZ/9kayOzj16pUdnyq5j9gf/zxp7QzujYz33vOrz2dtafDuzUZ7pJ8EPBgYDH4mBW0WdRZkHdd7UcSCeGWzi2j0IV4emcrCH4kZ7qtwsYjiIuwMbH1Z6oNdnkkJX0Olz6joqIqW3J27o95me54yn/nYJ2LWkT1mMszBF9hX7lAUPvDRi0dlCvIgD+yAtPYUQ8b+jV/3ZKzvnXh0fxZECGB/Q2/lgwUdcjuxwr7u96vRL38XatU6WNtR9MG7Zd7Llzx7f4NulT946xq76rlaanWc/zClv1bN3tNV6ziPzTDc0ytyhP5M365PsBwODgVcxcLmoI7GZDCh0PMx2kovGKoME79xRjz4O3EqTBQY0JJzVzVMWfV1CRjaJqiarTOT42xWE1a4s7FZFZOUxfjmPT5mssY25aqO2V/qUBY8FCXSrGCTPalzjTkG8ov3IefygPanDGGfckW/Rb+wokMEkdDbjW3mrfaxr+6pPGVfpqz7sRA/4zcKFcVekgXF0EotsYBk5+Fl1+Axv8hyNsYd2RJNrO++ednS9vndrMzfJdDAwGHgHDFwu6khmJAK/9jMIJp5MRq6ZVGoC2y0s4EOG8uxJCMpE79ENGjwUaFcKEJOY+s/kaxd9FnY7fhq/lIFe5uGn1x4SHXTsAXFhrUvOKYuE+OStgsUue5B6PnPs3j+pk9gad+Vm7HIv1Z89+3GGE/favePZJm54Vr/0rElnj4xqr3z20ogb5+mVnWvYnz7V8dE7pLzK88QzstP2tP8J+VVGp6/qn+cpBAYDg4GvhIHLRR3Gd0nLw7w7CEmEJJZsR4mhBojDFt46T2FBMeNtYV1/9Rm7KYSu2Jo64c8iINfq2PjlPH4zn7eMGYech7YW2imLMXHq9q7S7T5T7Dwpb1evdCZhn5/ou6IOuWCt4oxn6G11fWWPe929K51+6VmrMl3rZElr8d/Zh0x46y0Yc3yIyHeWorKzQT30yIHmI1q18VfoS19nPMl8MDAY+GoYuFXUfbYTJIguIX2GHV0i+Qi9JsOUjd+fpT/1fpexhcOT9lKkTtznoH4SUyNr8DQYGAx8Fga+RVH3WcEYPfPiDQYGA4OBwcBgYDDwXTEwRd1vA97vCt6xe7A7GBgMDAYGA4OBv2Jgirop6v7Pz2nNC/LXF2RiMbEYDAwGBgODge+CgSnqpqibom4wMBgYDAwGBgODgTfAwBR1b7CJ3+UTxNg5n3YHA4OBwcBgYDDwcRiYom6Kuvl0NhgYDAwGBgODgcHAG2Bgiro32MT51PNxn3omthPbwcBgYDAwGPguGJiiboq6+XQ2GBgMDAYGA4OBwcAbYOBSUccfZvW/Q/jX/I/+kv2rlS1/BJa/au//1EQn/5YKnUf/yQA+/vq9/zoLPmQw95l/xHgnRsQz/92Z/r0au+GfT5aDgcHAYGAwMBj4WRjYLuoopCxSsv+Ioo6Czf9zmrpy3P3PUfgo3JKuGz9d2Fk8ojtfIHWvYnRka+dfyp7xz3pRZ79nvwcDg4HBwGDgDAPbRR3/A9IihYLLQmZVsJwpPlrP/2mKHv73Krdv/P/NtKP+T1bWtTH5vPFzDfuP9F9Zo5BUbrXH+S5G0LqOT9hOy2K247ti29DOATAYGAwMBgYDg4Gfg4Htoo4ihKJDcFhcfUThQaHETVW9+VK3BSU2OGfP15krm7SZr2Klf7WnYLQ4Y5zynO/s0Qf65GH8EXZWHfP8c17y2evZ68HAYGAw8DMwsF3UVUBYeHQFS6W980xht+LzJu9qcSZfVwyudJ3N47/FW6V1vsaIr39dowitfHnjWAvFSjvPP+NFnX2efR4MDAYGA4OBMwx82aLuyHALqStFHUUi9BRTXSF1pO9oza9Luxs3C7da1OVXr7/73e/+T1GXX+lW3iNbZm1e+MHAYGAwMBgYDPxcDHzLos5bwt0bN4o4v+7ktu5JwCu3+zm9VVFnUcq6tlDI5e2kBejT9qpv+p/70s/ez94PBgYDg4H3xMC3K+p2b7Eo5Cj6LI4YP/1V5pktq6LOr4Et6vLrVm8Rrxau84K+5ws6+zr7OhgYDAwGBgO7GPh2RV3ecnVfXep49+dCuFXLX/aQ9m5/9EsSyFwVdRZsFnX5zBhe53y+a+PwzWEwGBgMDAYGA4OBn4GBb1XU5S8Y7H4tSeHnrZ1Flrdhr4I8fzYuvzpVrvrqz8VlwQltFqr6NUXdz3gBxcr0s9+DgcHAYGAw8CoGvk1RR0HnV6n8uZOuiDoLhr/UgJwz2p11izPkcWtXm0UddKxpcxZx6pHXZ39WD17npp8XfjAwGBgMDAYGA4OBFQa+RVH3REFHACicLLSQuQrK7jzFpfJ2evQjO2/4Vl8hK6/e8u3aNnTz0g8GBgODgcHAYOBnYeDLF3VZAN29oRPUWdRZYLl2p7fw2u3VmXZ0XwXnL048+TOAd3wcnp91IMx+z34PBgYDg4Hvi4EvW9Rxk+bPlVE08TWkX1/eBZxfvyLvVVk7Nljsdbdt+VVylaXfT31NXOXP8/d9YWfvZu8GA4OBwcBgYIWB7aKO26VsfvXoz4u59kSxREFnQURPMab82tevLymIKKK44ZKW2z7tRR40q4A8Oa8PXVHHnOvYg720LDw7viftG1lzMAwGBgODgcHAYOB9MLBd1FmAnPUUUq8CBBlnelzPwocCz/lV/+pXuFd804a0MfmzgJPW/jPtTJtm/D4v9+zl7OVgYDAwGPhZGHi7oo6bQ7++tEDia0wKqO7n1z4S8OpfFXXorreIFHNH9B9p78j+WS//7Pfs92BgMDAYeC8MbBd1s/HvtfGzn7Ofg4HBwGBgMDAYeC8MTFH323tt6Lygs5+DgcHAYGAwMBj4mRiYom6Kupd/BnIOj595eMy+z74PBgYDg4GvhYEp6qaom6JuMDAYGAwMBgYDg4E3wMAUdW+wifNJ6Wt9Upr9mP0YDAwGBgODgV+BgSnqpqibT2eDgcHAYGAwMBgYDLwBBqaoe4NN/BWfBkbnfAodDAwGBgODgcHA18LAFHVT1M2ns8HAYGAwMBgYDAwG3gADU9S9wSbOJ6Wv9Ulp9mP2YzAwGBgMDAZ+BQZuFXVX/r+r/93hCeeQxX9g6GTx/2JZ/8Mf/tCudzx35/jvFOi5EocjXfxbNGTiwxEda9DiJ+0p/cghrk/JO/PhqXVs5r9v7MRtV6c4Wv33kT/+8Y+fgrFde6/Sscc7PvCfWcBk/d/KV/VBz7vC/zVe8WKTmF7RXJnH7iN9yOK/vaDzityhnSQ9GBgMfHUMXCrqOHz5N1ZX/i8pBycH6KuB8P/Bkmw6WSYrdJ0d6B2/c+hx3PX+f1kSY7d+Z46kh91nxQk+8i/PoKWtCtyrNrhHV/b1qo6n6fH96Thgozjr/lUbuELnCoN3fNSHu/1VnRSr6DoqaMCZ9jC+qiPpfV/AVs7nWPyj8+z9S75uzDuEnLM9OotBJ3vmJqEPBgYDXx0Dl4o6nOFw5kDMAsCigPk7becg9+A/KthMyBQ+d5KROla3NPhvMQHtU5tL/LD5SB7+GHtsoKgk1meF4JFM11L2WTKU51f2FApZ3DJ+5UaJGFLEgR8x1BV13AA9FXPjhzzsBwNXmv4rZ7fXh6P3yMIP2l25KzrfF/qOxiIMbOMTuL7z7irbdxj/8IN97BpxR1e35twrmNKe6acIGAwMBj4TA5eLuiwALOyODk+LDw/Krt85PJFDOwsO8neKxE6OCZ0Df5X09OfVYgqfs4gglj7Tp/yMucUk6yRBWtJ2fu3MpY6V7ztykgY/KBKNmQUMc3dtTjuJhUmc+KXuK2MLD+OPneAoZaCX+Vf0pDzHyKSY83m3hwfeXXrowBw8Z++RhR+xNSa1390/4oXO7h3PvUSe+/BKMYlvvBP4a4zQf6fh85X4Du0k78HAYOBXY+ByUYfBHNAWFN1hnU55sObc1TEHPocySYZke+eATp6asNMebym6YolDXjn4tdOQl/Idn/mBbGgz8dVbtLT1iQRknPEdvdp6tYcXW43Vqt8tDFK/BQfFAnqO4pN8R2P3Anvc44oRaVa+1Hn370gva/Dt0qYseODNudVY2mpjPosfC79c68Y7NitrVQi7lxlr5yrWV77lvPiV1/3Et9rwCbvqfD6/8g6kXTOeRD8YGAx8FgZuFXUYx4FJ09CdxNElhzzQlVV7CwSSBIcuPF1TvsVfR8McMqqOfPb2pxZ22qGenR59KduxviiT27FMKCYkbECPiUp+ews7aND1aiLSd3p1XO3xxdhwc8INjL6ZtFlnfEW2sar7QqzO4nSkR5uInzrAM8/GFPk05r15pCjgWd2MafhGf6TTtSu08tCrJ+dWY2m1l2ebvvhOuP8dLTzM79pM7KDtPtgY54qBV4p0Zea5tIrJrg8r/pmfJD0YGAx8RQzcLuqqMxzcJsHsTRo5l2OTSZXnM4c8SZNk4lzXZ3FDwdTRXJkz0ftVpLcO2LIjx+R3lmBIlMQoZeKzyZXkoyzGXYPfwoKxNqfM3bGJET2vxFE8dHrxGfm7sSQe7gc8XUxrYQdPp7ubE6NdbJnza0FwCz8989qhP6wxxxpzna46d4U2eVNnzndjabt3TV9Y810jxqv4Qbdrs3GtesUYuO70MCfmsb2jqX5Cg93w5Ro4REZt+AB9necZnpQx40neg4HBwHfBwGNF3cphDkkO0NX62bxJBzkrWg909NBeKWrUgcyUY1FhYodO23KOeRMfSU15XY8O7KWAg0c56GWepMO8a6x3jSSELG202Oh0ns2h0ziSfM/o76xbsB7tqXIpLE3w2HbkG2vaD88Rbcp3D5hz79wLsYVcxtBUTPPsXld+9ax6dO/EofJXG+p6PkuLbTnPGD+xQYwx1vdKy7P+ndkMJpGlbHhzL9kf49npYS33/azQsvCudukfslg7auo78r+zdeYm4Q8GBgNfBQPbRZ2Howc1PU5w2B4dlCbZIxqSfBcQEyq64O9omMsiAdpOHgn+7mFtIsvEjl5jQkJJ27yJOEtEFm/0ylIOc0dJT7rav3K7pj3E2luWV+RV23jOPd2Jj/ihr0Ua+0JLPVnYgQXiehRHbIBOW9xrseK++IwuYpN4xDafK3/a1o3R/UrrZNY5bENHjRV0+ufeV4xXWfrXvWNJK37UC597yYePoz1RDjS+S8hxj1y3h0597oNr+tf5Lo29vuVeu9b1Yq3DZkc/c5P4BwODgY/GwHZRx4HKgUnzcMa4nHf9ar9KEB7IHOjI7IJhMuJQ53DHNj5xJ62H71FiSPo6xkfk1uJN+zLZUAShB/qzxGXCQp+yUjdzXesKrasJKfU41h781B7mXH+1J04m39Weo4O4eetILNnPLpas0apd0IIX19GJT50M6VyrcSQO8KvD/dV++NDjc+WXb9XDi/xun4/mjONKbs7rI7blPGP3mTV8433ifUlMJ8+Of/Aae3p4fAfRhzzmGNOnfMbwsybOscn4Vlqe9QFd9ZxwrdNTZUGDDHjqWvecGK16O/qZm4Q+GBgMfDQGtou6NMQkkXNPj02e6uoOTROFiQMbPGhNCJlgrhYoJBKTvfLST21LudCjsxaAyeeYwg97eTb5uEaPXyRv9ND8esgE5Ty0VxNS6mFsvNGJDzTs47nzvfKvnokFdiqLsfZ3PNBLi+6jZM46rZPDHHuQsro9oWDAJmWcxREZ6IQPHumV7fNuYQA9OFb/bg8PvDv0+IfNHb24cy33vbMLOmQd+WfB6YeElK296u3kHNkrv732qjP3Ehr1YPNu62xSX/Yp+winyTPjSeqDgcHAR2LgsaIuD7jdw7MewOloJgTkVVoP87pmEYc9yiCxM5/yz8bKqbd+yWcioc/5nTEJE9tJBiQ9bWVMwz/WM8Ewzxw9OoiJcXEt6XfskMb9w46jOdd2e/3CbhvxsiiqcowLNPpZaXxWns9dT0FK4Xy0j8lnHNkXCrXKh13gSR7jZgEkbu7ug3Kf7MEIsWIvsCubaxlr9gZ6/KwF/Zl/xoP4OU7Z+uUavXP2nU2u1R492Oq++T5Ip57Od9ayidXOJuXVHoxY0Ne1eZ7kPRgYDHw2Bh4v6jhU86Dsxh6e9QBO50keHNjMcWgnLQWPt1bdGnM26Ey4Kf9sTPJGxurA9mbLm6AucR3pMAlpZ+1dzwTjnLqIiXFxLemP9OdaFsjKZj3na3JP/p0x/Owp9uorzx0vNqC7W8s55eTcarwjDxrip1x7ebuCBnx1RV7GsdpkHNy/rs/YXKWv+jLm+lT7aq/FUi1qjc8KZ8wTj4xllY19R3K0t+OrvhEbb7vxCd6kUc+OLGiQsfIt5c54kvVgYDDwFTHweFG3cyB6eNYDuAbIZJqHNQWaBZ19lWPRyGGvjCr76JlEgU4KuxUdxR40Jj90rmi7eewiDjZt9pl15HcNGmTit74zB+1O/Ks96lZWrpsUu7WkuzJmX7A1i6Er/NIaG5/v9txMGQNlsvfsscUs++EtnZiysLeoQL/xco86m6RRV9fnPl6lrzrZO3R0Nim7rukvfH64Sv/SvtRHTLyFXck+k3Nkb+pijJ3uB7ZWnGoD+8v4qIkBaKqeeZ4EPhgYDHwHDDxe1JH4OFiP2qoYWwXMw5qCzpsxDmALmXqQO39UlK10MQ8fOvO2pNJLQxJDP/QWAJV259nkk7TI1E98spA0ARtjePT5akKSb2V/JvfVrWXavDNOnXduUdWBzTSf7/QW5cgBW+5ljaOFaMbAPUucOOcedTZJU3VAa2xyTfpOpmtJX3Xq0xF/t6YtiY0dfeqXtpPtmgWgPPRH9iZdHWMnvDmvHtZ2GzwpY8aTzAcDg4HvgoFvVdR52FPoEGCTTj3IWTMJXz2gvaXrZLqpFlfascMj76o3+eQ6SSjt11+TJDZqp2tJn7K6cRZseRtTaY9+xqrS7jxrK/7pyw5fpTFJ1/krz+wdMbQw07aMI/uMLmONfGJHEVhvG6U98su9Th3a3OmXvpPpWidLmdi9irX8nWz4Wc/CW/ojfeqVtpN9FKcje5Xd9XWPtH/le5XRxb7SzPMk98HAYOArY+Dxom7nsPfwzCR5FCQPa/iy+DiSw62Zt3rdbUCnz0R9lARSbt7MefuYNzmdjjqHTvwwydETFwtHxsSUJg30yGHNGBqLnfhrA7z4iu3Y4XzXWyTv0Hb8OacsdJ/pTb46hp9W5195rnE05tVvfaj7bUwTG9Ue9gi7u72q+uGV3n1Pea51sqTTpiP+bk3+7NVX/U4ax9J2sn1fuv0/slfZXU9M4c21IxuSjjF2rval0vpMHHZiIf30UxAMBgYDH4mBl4s6DmUONQ/Pj/z6tQbCQ7ge5CYRb9Ao7vK2ocrxWR+qPNfx1WSUxSXryCch0HZ05dd+8tmjX9udy17/oNNWY4EP2nvUW6zsxgbfLZLVeSQfGmyhoMY2GjgxfvizI+dIhzE5orm6VuPIPtUYuTf4UuXjE3bV+XwWZ91eVf3wSc9aysm1Tpa02nTE363Jn/2RLUnHeEVLwUuMVj8ecWRv1ZHPHaa0gb1C7lETm0exTH3KRm89D5JuxpPEBwODgc/CwEtFHYnAIs4DzuedwxOaHUe7wxo+9OcaxRQyM1lYvEDnV2ydzizKugSXBR2HP89VjjGoRUCl4xlbsBUextqZtNjMunP6q30kEpOJa0kvX+3VhfzdW0xkqAO+VQygM2lDt2pH/NXe1bOyV+t35vUx45i3buJktcdgD7uOdCMbmtQhfadfetaks3etkyUNOEPfEX+3Jn/2R7KSjrG2VdnOi93Kd0VH8uIjvDmnLvDG2lGDZrUvKdOxt7WdXmmmn2Q+GBgMfCYGbhV1Hn4cZrS8qTtKLjrGIX/lIFzRKgd7SBDaUw/2LGI4iDNJaxM+rPRAr88k7a6gU07qOioipbc3+fhMjz0ZT/2tSRJa15I+ZTHOwhTZV+xTFjzGmVh0thAv4sA+SEtPIUT87+hVf/bKzrlXx0dxpADGB/R2Pljw5YeKzh73uturTr/0Xaxd62Spu+6Dccu+ky1/9hatO/TalrRg0Bh27yG6tDf50obVGH/qu9/ZsOJHHzKOYpm87De+0Bjn2ownkQ8GBgO/AgOXizoSm8mAQsfDzMNz50BUBgl+x+nusIYvCwxoSDirm6cs+rqEjDwO9ZpIMpHj7yoRpR9Z2K2KyKRnbPxyviYYk061ER7XVvFn3WSK3FUMUv9qXONOQbyi/ch5/KA9qWMVR4t+Y0dxQgFBvG3Gd7UH2sm6tq/6lHGVXj32Fkngl3G2rkgD4+gkFtnAMvbip7KPeu1GhnTK4B1xrvbam3yVpnvGNnhZ027fRfbPuVXvHsMDjWdbp2vmJmEPBgYDXxEDl4s6khmJoH514gFOXx31kK4JbLewyMM6ZXt7xjp6sS3X65gC7UoBYgJS/5n81GcygXfHT+OXMvQLfta1h4QDHXtAbFnrknPKIlGTjGlPJCuLXfYg9XzmmPjQntRJbI27cjN2uZfqz579OMOJe+3e8WwTNzyrX3rWpLP33Up6+eylETfO0ys717A/farj3XeoyrZoAoNHH46O7E3b6xg74WW+2nznWVlVzzxPMh8MDAa+KgYuF3U40iUtD/AuuZAIOSCz7SYG9OVhnYGksKCYeaJISbmOsZsEdMVWeenhzyIg1+rY+OU8fjOft4yZaHIe2lpopyzGxKnbu0q3+0xiflLerl7pTNQ+P9F3RR1ywVrFGc/Q2+r6yh73untXOv3Ss1ZlutbJktbiv7MPmfDWIos5PkTkO+sNlnLPem3Tbos6YnnEi072Vr4j2lyDx/cD3a+23Xc3bZjxJPvBwGDgV2LgVlH32QZzuHcJ6TPsqMnuo3SipyYxnj9L/0f59ZFyiU+N2av6KFIn7s8cymI6C//B8zOxfRXnwz/7MBh4Twx8i6JuwPee4Jt9nX0dDAwGBgODgcHAcxiYou6354I5wJxYDgYGA4OBwcBgYDDwqzAwRd0UdYc/3/SrgDl651AcDAwGBgODgcHANQxMUTdF3RR1g4HBwGBgMDAYGAy8AQamqHuDTZxPMtc+yUy8Jl6DgcHAYGAw8I4YmKJuirr5dDYYGAwMBgYDg4HBwBtgYIq6N9jEd/y0MT7Np+jBwGBgMDAYGAxcw8AUdVPUzaezwcBgYDAwGBgMDAbeAAOXijr+KCt/ZZ7/suBf8+ffRPGX2/MPjHaVNX+dPf+tl3wd7atz2II+/zI9+ts6mQAAIABJREFUtmLjq3JX/PxBVf7avv+qC32MmTv7o8mfGZeV/TN/7ZPQxGviNRgYDAwGBgNfEQNbRR1Fkv931GKu9kf/A5TiptL7fMR3J2AUb8rO/qOKOoq2LHJTp+PVv0X6zLjcieXwzKE1GBgMDAYGA4OB74OBraIu/8coN1D8D0du7ShW8jas+x+p/r9HChxo4aFlkfhkwZX2oMPbsyd1JMCVj3/EibjQasySh/Fnx6Xqn+fv85LOXs1eDQYGA4OBwcAOBraKOm7quFHjZqkTamFDQVXXXaOvaxZg3HTVtbvPFEt5M6aOjyjq+NrV2ziKuGozOl2vX8N+dlyqbfM8B8RgYDAwGBgMDAbeCwNbRR2bfvQzc95K1eKMQsaihp8dq+Ch+HKd2626/sTzRxZ12Hxk/2r9K8TlidiOjPc6DGY/Zz8HA4OBwcD3xsB2UXe00d5I1aIuv2LkVqvKoFC0KPqImzT0fWRRh3x/ng5fq38UsvqXRfFXiEu1dZ6/94s8+zf7NxgYDAwGBgOPFHUWTvQJKos9ChvnKW6ywLEo6r6+lOeVXts+qmi0cMMPxhSvNMb6VnV/hbi8EtPhnYNjMDAYGAwMBgYDXw8DLxd1R7dtfi1rUZdft1L0AAiLrloQPgUW5dfC6in5yMEvfubQWzl75vQz9X2FuKQ9M/56L+bsyezJYGAwMBgYDFzFwMtFXd461a9YLags6vLZIs45n686cEav/I8s6ijc1GNBR78q6pIW+/OZcc75fObnrM/LPxgYDAwGBgODgZ+NgZeKuvyB/+7r0/w7bAAtC0DpLWg+qnhR/kcVdfro16/8cgQtv36tvzUsj8Xur4jLvPg/+8Wf/Z/9HwwMBgYD74eB20UdBZ0/M8aNVP6cnEDJYsU5ix6f/dMetfBx/dX+I4u61W+3anMWvfk17FeIizZO/34v9ezp7OlgYDAwGPiZGLhV1O0UdADq7Lc8ofHryo+6SfvIos6fjev+Bp8vlPr5Q8jOfYW4aMv0P/PFn32ffR8MDAYGA++HgctFXRYkqxs6gZI3WXlT5Xr+4gRj55/sLao+omj0v2IQh5XN6qeX5ivERVumf7+XevZ09nQwMBgYDPxMDGwXddzOWaBwu8bXpd1XrhVI+RVtXVMeNHXtqWd1fERRl1+jUqhVm/PrV3+GUJpfHRftmP5nvviz77Pvg4HBwGDg/TCwVdRlcUJBxw0VRUzX6m/AZuFDgcWNHM1bLuQ9WXBV 渝粤教育 m7hFswjNtZ2C9Azw+IpsGkUafqiDG00LN9aZT3mfHZfUPeP3e5FnT2dPBwODgcHAYGCrqKMgsXg567sCLQu4yn/2Fe5VkFb5q+daZF3VIz1fK690ON999Qz/Z8ZFe6efl34wMBgYDAwGBgPviYFPKeoADzdX3ppR7DDuCsBXgWYhddY/VdRhL7L4Otrf5EU3Y280j3z6rLgc2TBr7/lyz77Ovg4GBgODgZ+Fga2ibkDxs0Ax+z37PRgYDAwGBgODge+HgSnqfvt+mzYv2uzZYGAwMBgYDAwGBgMVA1PUTVH3v36BowJknufQGAwMBgYDg4HBwPfAwBR1U9RNUTcYGAwMBgYDg4HBwBtgYIq6N9jE+QT1PT5BzT7NPg0GBgODgcHAR2Jgirop6ubT2WBgMDAYGAwMBgYDb4CBKereYBM/suof2fOpcjAwGBgMDAYGA98DA1PUTVE3n84GA4OBwcBgYDAwGHgDDExR9wabOJ+gvscnqNmn2afBwGBgMDAY+EgMfKuizv/c0P03CP6vLC2Dxf+szeer4z/84Q9/+T+1Kz7+f2ynd0V/Ns9/oOD/4h7R8d8qqp9H9N0adq/0+D9pP+K/fXS2zNwccIOBwcBgYDAwGHgGA7eLurN/w3W2fmcD+VdcyOVfa1V+9TlvcUJhRhHj/G7/u9/97i+6+HdmKx5kq7crNFd83TwFKLLwsVt3DppXizr4kYP9yrU3blPUPfOCGdfpJ56DgcHAYGAw8NEYeKmoozgg+V9pFhR3HPvTn/70l2KEgqvyW1w5D43/a5b/w3r11o7CEZldAYkOizB0YBc67hSP2muByA3a73//+2VMsQldRzHv4qMebTc2tYhELjrok2fGcxgNBgYDg4HBwGDga2PgpaLuTuK3aLgKDAodig2+oux4WaPVNW/3WDsrdpLXoqfjoXhzneLOAnBlW8pdjSnUKA5Zt/DVp6v9zq0hPqAT2VnYGa87e7vy7bPm8QmcZPx2/YDPPSUmjHd47/LdjcldfcP3tQ/iu3gYvtnXwcBgIDHwUlF3tdhI+jRiZ2yiXhUsyu5kkdCycOloco5CzsSe844p3ljPpO/cFT3K89ZPXp7xs2va1a05t3tjiB4KSeKjLWdxlu6r9eyFGMg+92hls4Vs8jmmuHuabyXvbP6z7Xx3fWfxnvVJloOBwcB3w8BLRR2HvoXEbm+iuBIoZJNkuVla8bF+lIBXfN28BUIWO9Jpf72Vy9s7aKTf6ZVJkXVGj58UXmd0u+u1APyuRZ12Ex/2xlvIs6LOW1bjytffNIt05jsZd/l296XS3dU3fP3+1fjO8yTvwcBg4B0w8C2KOhM2RRa3aCTZ2ki+JPI63z13X6nmZloQUEzmvMUXxWMthqDLwg6bO5qUJw+3ZbUgxVdk1Iaf0Nd5nrsiNPXxc3sdX84hGx3Yk/Orcco/GxP3ncL1TE63TvGSv9GLvauCLPnda/qcZ6wMYlLX7 渝粤题库 vJVObvPd/UN33+/L7txHrpJ7IOBwcB3xsBLRR1J827bDZq3dOjxNvCuTvlqsZa2UBhVOooRihzmVwWdMrKwoxg4K7S8SaGAUAY9xaj6VgWV89oGT8qoY4sU/XuirzpWz7mPWXyt6F+d19ejmFBgGoNun7DT9cTMXb67Pt3VN3z9/t3dh+GbZD8YGAx8dQzcLupIlpnodh2F5yjRVjkWLCRXeCma6LNZGEHLPLSOk87x0Q2aNxvqg8fbK76SO+LVdmi81UNOVzBAC536KELkpydG2pDz3Vifr8T1SA6x69ZzDttoOXc0do/gedXOIz2u7RR1aVN3e8v+6GfafJdP2672d/UNX79/V+M/9JPIBwODge+Cge2ijsKExPYRjaKkCxi6TKr0KzqLGgsjaB13cldz+Fj1cdtBUWdSRxfjzhZjZIHATU/3t+DUn/5Ve13r9Mhvr//a6PzV3iJg52cCjdOuDgtdZDPe5btLt1PUGWN8UQ+2pX0W9LmPd/nUcbW/q2/4fvufD2S5f1fjP/ST0AcDg4HvgoHtos4kaTJ/sif51IBZTJFUvfVaFTh+TaYcbKtFUpXfPXtrVvVlkjdRqivlGKOVnUmLTHxTZ7VXPVfi3NmUOs/G/nLA6mYx+bUr577S2L04igmJPv0QR8wZA+Xk/tzluxufu/qG768/F5n7d3cfhm8S+2BgMPDVMbBd1KUjJL0uWXpjtFPUpLxubFHD7ZHjlVzXoUUW9l09xJVBInTc6XONvtptAdDxVVoTLrSdveqhwGR81CxCO5uq3tUzRSZ20Lhp5BkbKa47Hmm7ta8w514cxUQafMHmfGaccz7n3FW+u3FJu6p+7ZLG50pXn6X7iXx392H4JqEPBgYDXx0Dt4s6CgkKkmx+fefcUSHCmrchXZAoJkw80JJAkdvRmphch1bejr6bQwc3ZxQzR/pco69yqh11PZ/xnZsx5jp71aNPyVvH0CCjs6nSrp6xBxn+PJ23VsSk2ydoaSt5v3revTiKicWwfhhznilo8UE5iae7fHdjclff8PX7d3cfhm8S+mBgMPDVMXC7qDOpdz1FRibIjoa5TJRdoCiwmFdWV+DkDZMydmRLa8/tFIXMmT5toZfX3gKgs1Mae+zWv85e9ZCYGR81k3dnk/rOer8GzgLOQg/7qk/M0c7k/qp19+IoJqxVP/AzfTUuxFhf7vLJf7W/q2/4fvufH2/I/bsa/6GfRD4YGAx8FwzcLuo4JE2A9nlTRwC87bFYMijcwpFMdw9ak1MmW2VZeHjrxTyyzwpG+bv+SJ9r1SfkWEh0dnZ6nOvsVY9Fx04PjzKv9O6TN5XJa3xZ86tYCmDsYS5pv9LYvTiKiXjFF3+5pfpg3FPOXb4qe/f5rr7h+++zgD3M/duN+9BNIh8MDAa+GwZuF3XdIUkxwwGaRQ2JvxZYJtxVIq1BRFeVK42y8oYJ2qoTeooSEp03ZMqo/ZE+CtEzW9L/Krt77uw9sqHKMO7dnlTa7tnbqBW/xQE9/OrrYtzJ/xVz4mLlU/pB/BM/2muxy3oW8fp/lU+5V/u7+obvr3+nLvfvavyHfhL7YGAw8F0wcLuoI6GtGsnEAFiceKh683OUbOW1V0bKZc2kVW+MsKsrOCxOznSv9KGTnzlDflcYWkhUO/Vj1Xf2HtlQ5RiHM78qH8/qIYad 成人学历 T/KkT+rrYiz9r+7di7OY4Dfx92cJ025lVHxBc5cv5TMGkxbLdS2f7+obvq99o5x7POMpHAYDg4FXMXC7qCPhkTCzdbdYFArcBJFcKOjoSaBHBUR1ysIjCwtoLLBq4u6KJOiVU+l39fm1I/5UHp4tAqqdHW3OdfZqKz4i96it4pA6uvHqJqqjzbk7RR37DT5oV/Y+9R6NsSmbMUFfzlfdxtk9ICY0/7wL8x1e7vKlDynDX8zI9RwnLVj4aDvfXV/GdsaTSAcDg4F3wcDtoo5DvwbBZO/tA8/Q8LWnNwb0/mxW5V89m2CUB51zXYFlgq7y8s+I1LV8VnbqS52rBPydirrcEwqf9P9s7I0n/p7Rui4Pe7NzMyXfbo/cnVb3FPlZwFUZFIe1ENSmu3wd/04s7+obvo//Y9fu6fRTHAwGBgO/EgOXizoSHImPQoDih0ZC8mYkkyJrOEcSt6hjnflVouyCAT18JmR69TiXfKxhT84x1sazorLqgxd79WH1s4AfUdR1/lW/jIfxruv1GXp9OSpaKh/PxOHsZ/A6vru3gp2sbk48nPWreIJR8SF+duJ5lw8fLKyvfNC5q2/4JtF0783MDS4GA++Fge2izsKhS5oUM9wGUOixTgIh+ZO0LHQoBPj61cRJIiNprgqkBFoWWSZC9KxuzLSxFp7Mdzd7qYtx6nPN246jWy19XRUOyqo9dsHLPLy0jKVzq554IwMeaI6KVmmhPyro2Ct8JhbZLOjg39m79BW7jmxL2hm/10Ez+zn7ORgYDAwGPh4D20Udm0HhQYIn4VM81Ns25kj23MpY4PBMcZC0yPCmiHXkHW029NAh36LCIqjjy8IFPhs6sa3jybnUx7zy4D8qZPQZO1Pe2Rj79EdbX+mVVfVqn/pyTyote7KygTic7VmVN88f/zJPjCfGg4HBwGDgZ2PgUlF3BhaLOnpu0SgiVgUOBQXF0tHNl/qyyOKmB7lHBQl8rKM7m/LO+tQHrUXdWUFo0bTyeaXXIot1dL/aVgWXfqxuONM+itfODmSfxT7lzPhnHzCz/7P/g4HBwGDg8zDwaFFnIfXdkz4FDYVZ+nF0Q/edADtff37ey/WdcDG2Di4GA4OBwcD3x8CjRd0A4vsDYvZw9nAwMBgYDAwGBgPfEwNT1P32PTduXrjZt8HAYGAwMBgYDAwGEgNT1E1Rd+mXOhI8M57DZDAwGBgMDAYGA18HA1PUTVE3Rd1gYDAwGBgMDAYGA2+AgSnq3mAT51PS1/mUNHsxezEYGAwMBgYDvwoDU9RtFHX5J0e6jeI3ZaHhT4B061fn+K1b/vxI/vbtVRln9Mjmb/6d/XkT/uQMf2fw1d/+9U/RrP7cyo4tZz79ynVixJ4d2UAM+bM30B7RzdokhMHAYGAwMBi4g4HLRR1JmcT0RFsleB3x776t/gjunXlkKr/2FDqs1z/78dlFnX4f/ceHavvVZ2J/5hfxMMavFphHha//Qmznbxbu+qndd/tdPdBp/xG2oCOG/tHtq3/LsNqDrldalXf2fDeO8p3Jn/VJYIOBwcBg4HUMfEhRR+KinSWds6KO9e4P4DLnf5ao6yQR1uq8z0c6Tc7ISDqejxL2UcFyB6Qkf/+d2pOFTtrCbRF+Hf1BZWIAzd2bJYpj4k58jmKkLbWYTnuvjrF7B4MVoxZdV/QhA31ZqIm32ku7wujujSj6aNX+s2f5rvgHLXwrm6uP+ex7elXf0L9+uE8MJ4aDgZ+HgctF3Q5ITCw7tHdpTI6V30RX53efLWSQY2GnTL9C1D97CzASmHPZK2fXBuiysDsqvK7IlJbCwSTtXNdbbPEVrYVZ7Y8KMf+DhTzoJOGnLvxknhjm/Ktj9+yqHPYN3l0+Ywlf8iDjTsvCMOXVsbLr/NnzK3zVxzNdrF+N547Mp2jAHu+mNhKbis+ndCGHveVDmoUu+vgQwdzRe/SkDSPr5yX52fOfteeXiro8/EwOr/Z3EgUg1ZYKWOy5K1NZHPQcth60yvzMog5b0IdubCEBad/d3pgd7ZlFhcXKEa1xWdlDgoQGP5DLuCZNac70uL67t9Dv0qb9xijnjsYkZHQZN2mZq7661vXGp8rpaJkzHqv11fwrfO90U7fC3ZU9W8W4zvPuihPj3/WeN5V/nn9WUp79nv1+BQO3ijoOvqPG4b+TADjYzhKvSbY7BK/OnenKQHIQ52F8xGtC/oiEwC0Zfp79QkPavhobS27FGGfz9sCiQr0dLXzeTjJe6fOmj7iY1KAXO8SXgpXGvDaok3kxwrrjlb6cv0KbfOrJudXYwhceaHj2Vhb9V/Aghoz/SqfzyKf5vNu/yif/1X7Xvs+ic5/xA5yKvSt7tmtr/lgHerjBZp9pviPasStz6CbxDwYGAx0GbhV1CCKBeTBlzxoHpoku1xzDCx0HmXSdccqCzkLAPg9h5+ihZS3nnD/TpQ0UG/BYVJzZiV/aqIyneosh5Bu3u7LxHznYW2UYI9ay2GJcaXnW56OYukfo7Jpfz6IbmdrgjYX2suat5ZG+tBN9u7TJlzpzvhubkLXXvaKwUz8+7TR5u73pdBtP7L3S5OtkHs3BR7GNfVeaxf+R7NUaeDe2K5q782Avf6zBfReLd+Wu+MDESra6OW9W/DM/CXwwMBjYwcDtoo4DygSRPUpNMoxzzbGHG8/QHhnqgVdpVvMrmav5KtevXqHnkLXwOLLTAke/qsxXnrOwJPG/IsuYdYWD+8ma4yN/9HkVFxIyMfSGUXpldoWj9ukjzxSGPFd+aVb97n5X/mpDXfdZe9wT/TUe6L/TkKuOo/6O7OQ5kt2twatv3fpqbjeeld/4ojeLr0r31LN2is+n5O7I8Vb8Tnx35A/NFAODgZ+DgUtFHZ+ad5IOh9POAYWss0/iHrYVlKv5VfJZzSuXIiNvljhovaVKXgse5nbaThy0ofZ+bYMMbXvlts6YdXuoX+qkmNT/ahfPJl2LtkrjbRV90ps01eczNPiY8cIGn9WX9FVnPu/szRFNyurG3qxVGcaW+V1bkc97gK9n74O2qNfn3f4VPvcDO3ebH0p27ZPOD1NX4yj/1R5/PktX2uaHG3T7ruT6jH9OMp69nr1+AgOXirpUSPIiadUGjQc+47rOs4kv5a3GHrbwZPNrnZxjzOHYfU3EPLJWepjX7ppYkxcdfO1GMdP5VudeOagtHEhwyMUOb4aO/FitZSwrjfLxj8KR4o44rOw31vBVWTyry8Kw0sPnLRz03nRZJMKHvz5X/k5nzsGLfPRcaRbPKasbY49y/RqWXlr0s+7zd+/x5zOLOvYfrNPE0EfGULx+5p7xbok3cf6RPo7sKRoGA++PgdtFHQeSRVD2gMbnHDtHvyoUOsBBT0J5oiGr03E2B5+HLsmc5ObzGe/ddYsc/Cap0bz1uHtbZyzxodpFMkOXa6mvFrnwQgf9KglSFGa8z+i9mYEv5TOfzyt91R/0dXZXuvoMjzGoa6tn45r7YmzAOjbvttW7sXrf0P1q28EyOnboaozggbfOf7VnbHTPPtI299F3Gb1X8faR9o3s90/6s8fvvce3i7rPAoaHLQdfNm5FaBQBOb8ac2A/lVz8dH2naNiNG0UANufNXDe3Kw86Y4nMWmS4RvyUSWyxgQSUBQvrJKcrSRC50JPkKdS4TVUPPTFFj3P6aoyv6lPOR/fGCHtTl7ExrjzvtBVGjceOjKs0nU6K+tW79Oo8sjNWX2HsPtV9fNo23r26P2DfDzNP6xt5753AZ39nfysGtou6j0wqVw/Ss1uk6uTOs5+gOdzPmkXdGZ3ryN6xQZr0L4usnK9FlrxHPfbUhFKfUx+yKMKgqUWYeNjZO+yWPvUxj46uYENfV+RV+9LfnT3MvbhKn7oYYz9YoOmL8/iJz2JAXub1wZjkGvQ+n/Xup4XvGf2VdWzMvXpyrP9X7PloWmO5g+cnbOH9FX/GNrH5hI6RMQl/MPDzMLBd1HEQc+CdNT+Jckie0breHfIccK7X3gOYxF/Xdp67wxM+D9ene2RfebkyhpVPO4lBXTt7Nm5dvJVb1yxciEl+/Sb9kW/cPuiLMaUA4qbOolT5FHAWRqxBnz+jpr5qX/osjbq6Pu29Sp+6GGMfOpCDXTR8o3eemOdeMa8P6lcua0nrfNcbo136TsbRHPKxb6dhA7az1zv07v2R/s9e0wfs/2zd4ig/xHy2DaPv5yX/2fP33PPtom4XAByKmbh2+Sqdhyyynm53E6G+aY/JudrO892vUywI0NElP4sg1v15s05/N2dMO7v1rVvrbJKevtPlDR92kqzUXelNaOmLsrP4dq6zT/3SVB2s60OuSd/JdC3p1UPP7Zg4qL266PE78Qat+tShXNaS1vmul5ciWR1X+jv4pGjLfdIubdEv579TT+yI/2q/P9IX8YL+j7h1/UjbR/Z7Fgazr993Xy8XdWef4EkyHo4ckEftahKgoKFAoHUFj0D0kITO2x/X7vTI8NCn5+BFNjeFVT6FiDE4srGzA1ny5q1YpSUhE+OzOFQ+fejifpaYWc+EIz191cMzcUCfhZl7kvTe4kGnDGKAXzTn6KXtbJfuyKZOv/SdTNfSXvXYs0es4yMyaNgvL/HCN/aUOee90XI/ci1joZ6uVxY4uNM6nzs9zoFl9NSv4VnXFm8pjUXtEz/K/Sp97sVn20Sc3MOr+/LZto6+75vsZ+9+xt5dLuo8gEhUHIQ2ixGf7TmsSNA+05MYmCcZXAEavPB1twXKseCC7okDEl3Yj7wstJhnzq8Is5hjnsR9NYnpX1cs6p+9N1w7tPIov4uLiblbkz976Y/2IunFjXtukVbt168qV9uPCmVtUseRftak73x2rZOVcruxPrCm3WBip0HfyXxqTns6n490ePNqkZ60xurMv4/2LW26OjYud/b7qq5KL16IX/2QWGnn+Wck5tnn2ee7GLhd1NXDz4O9GsJBVQ/zmuArT/cMj4UjMikG0JmFEzdYFmBd8unkruZqkZYFnTwWJiYzb2TuHMzKwv70SV2190ari2+l9dnE1SV0969bkz/7q/R1z4ln9ZWYu7epi7G21/l81ib6nGdc9TMnfeeza52sKttn9gRZ+AU+mcfuxD/+qU8d8l/ZS3mu9tiFnit8ibUuHvoBhhmv2pV3Ep3IozG+Yu8OLXuQzbigL+ef0g0GiAtnlPL54KLez9j7nbgMzRQTg4HvjYFvU9QJNAoeCoIs8Bib9DkcryQP5dJzC8TBm7L9FM180jomCaDzFb0p48rPOpEc1E1yOEtAxgg+7bfHP2R1a9JkfyQr6Rxra8Yxb93YV/TXQk9+98TnrteH1CFdp1/6zmfXOlnIZJ9YY++MhXtBLx9rNO3IGKsj15LW+Sd7Y3xFprd07A389f3Sjy6OV/QkrTfh6Ku3tkl3d4zcnfaET351faRv5/296+vwfe8kPfs3+3cFA9+uqEvnvNnJw5LEQyHG2lmRcySLZM1h3BUDzJNooEEGYxMexQdJbve2LT+p12SZ9q3GGQN0HyWhrvjI2DE+4k8bLLJ26bs4Ku/shtWCD53ydL3FBX1d7/RL3/ngWicL2a4TM+wCc8wZY/ef5yzUMsbK0FbWktb5p3rifFWHPPgI7sU5hZ7vl350cbxru3qxl/FdOSs+5O60J3wibl3xn2fVys6Zn4Q+GBgMXMHALynqPLBJBleM5XCEt7upo7ip8xzaFE0UXSbZI30kVGwyWUFrMcChXOVnAvbgzkRhsu8SA3MmSHjuFHT6koUdslY3G9hrTBhnw1bW0lZ8Ih7MZfP2Evu14ayHH/l1z7GVeRp+EHvsgs5mnCpv1cm6slZ9yrhKn/qIDT4lViw+sV9aY+wzdsHHs/pzLXmd3+15N5CZe+U4P3jsYg1/jL3vD71Y 国家开放大学 wRewgM2M0aG+2msb9l3Rr97dGAzdJMDBwGDgJ2Pg04o6DnwTnIni7HBnXZ6apJFBoUWyqBtIImBNPfLeSZgmXmWoF9syoWuDhZA3cCTAFR2yaE8kLuKALPRqS+1NviTcuqafuYbd+t317GmVs3pGLjLQIw2xMgaJhU4XtndxVBa9PkDLOBt4qPqlZy1pGRsrxqnjaCxPxpA5mnyM3W98Bh/o0D56aa/2yOlil3O78rFNvtwbbGIf0JXFnbQ7/RXcXI3B0E9CHwwMBn4yBh4r6khkXQJkjqSQSYKDfye5JA8JhISIvEyaZ5tHsYMuioeanM54WYdfe7sC8kgGyY/CZUVDcj8rVFa83Ty6juRx05hFRcpw/6q9xNvbGHhpxPPKHqAHeuJYMUJMLXK0h2fobXVdutoju9Ox0i9954tr1d6qM5/BFzHOOWOWczk2LthNQb7ra8pwzN5hry33jbnOT3lrL+7P3hl0uk/26l/1FWNV9zxPUh4MDAYGA/cwcLmo++xAX0lEH2XbJKF74Mr9oNhkL989lkdFdcbjO4zfyZfvEO+x8fVzZmI4MfzpGPjyRd1P36Dxfw6pwcBgYDAwGBgMDAZ2MDBF3W8DlB2gDM3gZDAwGBgMDAYGA18bA1PUTVH3v34GbF4OoFX+AAAAGElEQVTYr/3Czv7M/gwGBgODgcHACgP/H/0A2Ne/WG3cAAAAAElFTkSuQmCC" alt="文档图片" style="max-width:100%;height:auto;">
文章目录


    相关文章
    评论留言

    昵称

    个人资料
    个人资料
    学通智库​ 是专为 ​学起Plus、超星学习通、安徽继续教育、云上河开​ 等主流学习平台用户打造的一站式资源中心。
    • 文章106575
    • 评论0
    • 微语0
    标签